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ABSTRACT 

We prove some consequences of various measurability hypotheses. Especially, 
we establish that the measurability of E~ sets implies that ~ sets have the 
property of Baire. 

The present paper is devoted to the relationship between measure and 

category. The modern treatment of both theories has been developed in a 

completely parallel way (see [3]). This has remained true with metamathematical 

issues. Solovay has shown the consistency of the statements 

(i) every set of reals is Lebesgue measurable, 

(ii) every set of reals has the property of Baire, 

together with ZF + DC, by considering a single model of set theory ([8]). As is 

well known, this model was built starting from a model of ZFC with an 

inaccessible cardinal. Thus, the relative consistency results that could be derived 

by this method were not consequences of the consistency of ZF alone. The role 

of the extra hypothesis (the existence of an inaccessible cardinal) has remained 

unclear until the recent work of Shelah ([7]), which came as a surprise. This role 

is not the same for measure and category. 

THEOREM 1 (Shelah). (i) If every set of reals is Lebesgue measurable, then ~1 is 

inaccessible in the constructible universe. 

(ii) Assume there is a standard model of ZF; then there is a standard model of 

ZF in which all sets of reals have the property of Baire. 

After this result, a few people (including A. Louveau and the second author) 

remembered that, at some point, they had considered as a plausible hypothesis 
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that measure was stronger than category and, more precisely, that measurability 
hypotheses concerning some classes of sets could imply analogous statements on 

the Baire property. Nevertheless, nobody had conjectured the following: 

THEOREM 2. If  every ~ set of realS is Lebesgue measurable, then every ~ 

subset of 2 ~" has the property of Baire. 

REMARKS. (1) As usual 2 ~ can be replaced by any polish space in the above 

result. 

(2) The converse of the theorem does not hold; this is proved in [10]. 

Our proof of Theorem 2 also yields the following: 

THEOREM 3. Let K be a cardinal. Assume any union of r many zero-measure 

sets is of zero-measure. Then: 

(i) any subset of to ~ of cardinality K is it-bounded, 

(ii) any union of r meager sets in 2 ~ is meager. 

After we proved these results, we were informed that part (i) of Theorem 3 

had been proved independently but earlier by Miller and, similarly, part (ii) by 

Bartoszynski. After Miller's paper ([2]) became available, we realized that our 

method of proof could be dualized in order to yield results on the so-called 
covering property, introduced by Miller. 

DEFINITION ([2]). The covering property for measure, C(m),  is the statement 
that, for any family of zero-measure sets of power less than the continuum, there 
is a zero-measure set not covered by any member of the family. The analogous 

property for category, C(c), is obtained by replacing "zero-measure" by 
"meager". 

THEOREM 4. C(c) implies C(m). 

Going back to the ideas concerning Theorem 2, it is unclear whether or not 

measurability hypotheses concerning larger classes of sets have striking conse- 

quences. It was tempting to conjecture that the measurability of all subsets of the 

real line implies that all subsets of 2 '~ have the property of Baire and that the 

perfect set theorem holds, but Shelah has informed us that this conjecture is 

wrong. We still have a partial result. The MUP (measurable uniformization 

property) is the following property: 

(MUP). For any family (Ax)~B of non-empty subsets of 2 '~, indexed by the 

elements of a set B of positive measure, there is a Borel function.f, such that 
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/x({x e B :f(x) ~ A,}) = 0 

(where /x denotes Lebesgue measure). 

THEOREM 5. The MUP implies the perfect set theorem. 

Before turning to the proofs, it should be said that all our results use the 

technique developed by the first author in order to give a direct proof of Shelah's 

work on the measure problem ([4]) so that the ideas behind the proofs eventually 

go back to Shelah ([7]). 

w A combinatorial lemma 

1.1. We let [to] <~ denote the set of finite subsets of to. A mapping 

F:~o---->[to] <'~ is stow if the series En 1~IF(n) I diverges (where tF(n)l is the 

cardinality of F(n)). An element a of to w is eventually covered by F if there 
exists an integer p such that: 

Vn >=p a ( n ) E F ( n ) .  

LEMMA. Let M be an inner model of ZFC. If the union of all Borel sets of 
zero-measure coded in M is of zero-measure, then there exists a slow application 
F:to--~ [to] <'~ such that any member of M is eventually covered by F. 

REMARKS. (1) We note that the mapping n --> sup F(n) eventually dominates 
all members of to w n M, which is therefore a it-bounded set. 

(2) In his independent work, Bartoszynski has considered a very close 

combinatorial property. Furthermore, he has (essentially) proved the following 
converse of Lemma 1. If there is an application F such that 

(i) Vn [F(n)l~n, 
(ii) any member of M is eventually covered by F, 

then the union of all Borel sets of zero-measure coded in M is of zero-measure. 

(3) Our original version of the lemma ([5]) had a weaker conclusion stating 

that any member of M is eventually covered by some slow application taken 

from a fixed sequence (F~). That our proof could provide the present form of the 

lemma was pointed out to us by D. H. Fremlin. 

1.2. The proof of the lemma stated in the previous section, as well as another 

subsequent proof, relies on the following basic fact from probability theory, 

known as the Borel-Cantelli lemma ([6]). 

LEMMA. (i) Let (Ap) be a sequence of events in a probability space. If  
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P(Ap) < oo 
P 

then P(lim sup Ap) = 0. 

(ii) Let (Ap) be a sequence of mutually independent events. If  

P(A,  ) = oo 
P 

then P(lim sup Ap) = 1. 

NOTE. As usual l imsupAp denotes (7 ,  I..Jp~,Ap. 

1.3. We now turn to the proof of Lemma 1.1. We pick a sequence A(p,q) ,  

p E o, q E to of mutually independent open subsets of 2 ~ of measure lip 2. 
Actually, as this may be difficult to realize from a technical point of view, we take 

the measure to be 2 -z~r where u(p) is the least integer n such that p < 2". This is 

easy: A (17, q) is obtained by giving fixed values to a finite set s(p, q) of integers of 

cardinality 2u(p). Independence is achieved by taking the sets s(p,q) to be 

pairwise disjoint. We note that, if p is not zero, 

4p2= l.~(A (p, q ))< . 

Now, for any x ff to ~, we let 

G~ = lim sup A (p, x(p)); 

by the Borel-Cantelli lemma, G~ is of zero measure. If M is an inner model 

satisfying the hypotheses of the lemma, we can find a closed subset B of positive 

measure, disjoint from U xeMGx. We let T be the tree consisting of those 

sequences of integers s such that 

/z(g N B ) > 0 ,  

where g = {a E 2 ~ : a extends s}. We note that the set of branches through T is a 

closed subset Bo of B with the same measure. 

For any pair s,p with s E T and p E to, we let 

F , ~ ) =  {q ~ to :BoO g 1"3 A(p ,q)= 0}. 

CLAIM 1. F,(p ) is finite. 

PROOF OF CLAIM. Whenever q is in Fs(p), we have 

B o N g C 2  ~ - A ( p , q ) .  
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Therefore, because the sets A(p,q)  are mutually independent of measure 
>= 1/4p 2, we get, if p is the cardinality of Fdfl), 

0< /z (BoN g) < 1 -  , 

hence p is finite. 

CLAZM 2. Fs is slow. 

PROOF OF CLAIM. We assume s is a fixed element of T and we let 

p(P)--]  F,(p)l. 

We observe that BoO g is disjoint from all sets A(p,q),  p E to, q EFt(p);  
therefore 

limsup A (p, q) 
qEFs(p) 

is not of measure 1. By the Borel-Cantelli lemma, we get 

t~(A (p, q)) < ~ 
plEco 

qEFs(p) 

which implies 

(*) 

We now set 

we get 

so that 

and therefore 

U =  {p :p(p)>- p}; 

p~u pP-~2 < ~  hence pEo~ l<~176 

1 
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CLAIM 3. 
there is an integer n satisfying 

Vp>=n 

PROOF OF CLAIM. We let 

There exists a slow mapping F: to ---> [to]<o such that, for any s E T, 

Fs(p) C_ F(p). 

F~(p)= L] F,(p) 
tsl<k 

where ]sl denotes the length of the sequence s and 

Pk (P) = I F~(p)l _-< ~ I F'(p)I 

from inequality (*) of Claim 2. It follows that 

(**) ~ p kP-~)'2 < ~176 

which, by the same proof as above, gives 

1 =oo 
pk(p) " 

We then define an increasing sequence of integers (nk) such that, letting 

I~ = {p :nk =< k < n~+,}, 

we have 

~ p~(p )  = 1. 

By setting F(p)  = Fk(p) when p EIk,  we get the desired mapping F. 

CLAIM 4. Any element x of to ~" fl M is eventually covered by some F,, hence by 
F. 

PROOF OF CLAIM. Bo is disjoint from the G~ set Gx, hence by the Baire 
category theorem, one can find s E T and ] E to such that 

B o N g t q (  LJ a ( p , x ( p ) ) ) = O .  
P>=i 

This shows that, for p = ], we have 

x(p) E FJp);  

this finishes the proof. 
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w The main result 

In this section, we will assume that the reader is familiar with random (resp. 

Cohen generic) reals and with the connection between measurability (resp. Baire 

property) of g~ sets and random (resp. Cohen generic) reals. A convenient 

reference is [9] (inter alia). 

2.1. In the next result, the role played by slow mappings appears clearly. 

LEMMA. Let N be an inner model and F:  to --* [to ]<~ be an element o[ N which 

is slow. If there is a random real over N, then there exists an element y such that, for 

any x in N M to ~ eventually covered by F, the set 

{p : y ( p ) =  x(p)} 

is infinite. 

PROOF. We consider the product space 

l l  = l-I F(p). 
p E ~  

Each F(p)  is equipped with the equidistributed probability measure and II is 

endowed with the product measure P. Now, it is enough to prove the result for 

all members of N f3 II. If k belongs to F(p), we let 

k Ap= {y : y ( p ) =  k}. 

If x is a member of O, the sequence A~(P) consists of mutually independent 

events in O and we have (because F is slow): 

P(A  ~(P)) = oo. 
P 

By the BoreI-Cantelli lemma, we get 

P(lim sup A ~,(P)) = 1. 

If there is a random real over N, the intersection 

N lim sup A ~,(P) 
x E N n l l  

is not empty and, if y is a member of this intersection, then for any x E N Cl to', 

{p :x(p) = y(p)} 

is infinite. Hence the lemma is proved. 
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2.2. We now give the proof of Theorem 2. We will show that, given any inner 

model L [ a ]  with a E tow, there exists a dense G~ subset of 2 ", consisting of 

Cohen generic reals over L [a ]. This is equivalent to showing that all ~ subsets 

of 2 ̀0 have the property of Baire. 

For any nowhere dense closed set C coded in L [a ] and any integer n, we let 

C ~")= {y E 2~ :::Ix E C Vp >-_ n x(p)= y(p)}; 

C ~") is nowhere dense. Working in L[a], we let Oc (n) be the first integer k > n 

such that, for some sequence s of length k, 

n C ~") = 0 .  

We note that if ~r:[n, Oc(n)[--->to is the restriction of s, then 

~ n c = o  

where 6 = {a : a  extends o-}. 

We now use the fact that the union of all Borel sets of zero measure coded in 

L [ a ]  is of zero measure, which is a consequence of our hypothesis that ~ sets 

are measurable. By the remark following Lemma 1.1, it follows that some 

element )t of to" eventually dominates all members of L[a] and therefore all 

functions Oc (n) constructed above. We may assume that A is strictly increasing 

and that A(O) is > 0  and we define a sequence (up) by 

UO ~ 0~ 

u,  = x ( 0 ) ,  

u ,+ ,  = A ( u , ) .  

By an easy induction, we get 

Vp p <,~(p)< up+~. 

We now work in the model M = L [a, )t ]. For any closed nowhere-dense set C 

with a code in L ia] and any integer p, we pick trc (p) : [up, up.ll ---~ to such that 

~ ( p )  n C = 0 ,  

if such an object exists. We note that Oc is eventually dominated by )t, so that for 

p large enough we have 

u.+,  = ( u . ) ,  
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and therefore trc (p) is defined and is an element of the set E of integer-valued 

functions defined on a finite subset of to. Identifying E with to and applying once 

again Lemma 1.1, we get a slow mapping 

F : t o  

such that, for any nowhere-dense closed set coded in L [a ] ,  Orc is eventually 

covered by F. We may assume that, for each p, F(p) is a finite set of elements of 

to~, where Ip is [up, up+l[ (by withdrawing the other members of F(p)). 

We then go over to the model N = L[ct, A,F]. We know that random reals 

over N exist (because ~ sets are Lebesgue measurable). By Lemma 2.1, 

identifying once more E with to, we can find y: to--~E such that, for any 

nowhere-dense closed set C coded in L[a], the set 

{p : o'c (p) = y (p)) 

is infinite. As above, we may assume that for any p, y(p) E tolp ; then, y defines a 

unique element z of to~ such that 

z r I .  = y ( p ) .  

Given any nowhere-dense closed set C coded in L [a ], the set of p such that 

O-c (p) = y(p) 

is infinite, so that the set of integers n such that z ~ C ~") is infinite as well; hence 

U. CC"L 
The last part of the argument takes place in the model L[~,  A, F, z]. We pick 

an enumeration (z,) of all elements of too which differ from z at finitely many 

integers only. As z is not a member of U . ~  C ~"~ for any nowhere-dense closed 

set C of L[a ] ,  we have 

Vn z,~C. 

We let qc(n) be an integer such that, letting t, = z, [qc(n), one has 

i. n c = o .  

Applying Lemma 1.1 once again, we find an element r E tow eventually 

dominating all functions qc. We then define 

s. = z.  [ r ( n  ). 

It is easy to check that lira sup g, is a dense G8 subset of 2 ̀0 consisting of reals 
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which do not belong to any closed nowhere-dense set coded in M. This finishes 

the proof of Theorem 2. 

2.3. We now say a word on Theorem 3. It can be proved by stating the cardinal 

theoretic analogs of Lemmas 1.1 and 2.1 and imitating the previous proof. For 

example, the analog of Lemma 1.1 is as follows: 

LEMMA. Let r be a cardinal strictly less than the continuum. Assume any 

union of K-many zero-measure sets is of zero-measure. Then, given any subset X 

of to w of power r, there exists a slow application F: to -~ [ to ]  <" such that any 

member of X is eventually covered by F. 

Alternatively, we can prove Theorem 3, by applying Theorem 2 to an inner 

model L [A ], A _C r. Such a model contains r many reals and therefore r many 

codes for Borel sets, when r is regular (or at least when r is of uncountable 

cofinality); but the general case can be easily reduced to this special case. 

2.4. We now "dualize" the proof carried through in Section 2.2 in order to get 

the following: 

PROPOSITION. Let M be an inner model. Assume any zero-measure set is 

covered by some Borel set of zero measure coded in M. Then, any nowhere-dense 

closed subset of 2" is covered by a meager Borel set with a code in M. 

PROOF. We essentially follow the same steps as in the proof of Theorem 2. 

STEP 1. Given any x E to ~, there exists F :  to --~ [to ]<'~, which is slow, belongs 

to M, and is such that 

Vp x ( p ) ~ F ( p ) .  

PROOF OF STEP 1. We follow Section 1.3 and we define Gx in exactly the same 

way. Gx is of zero measure and therefore there exists a closed subset B coded in 

M and disjoint from G~. From B, we can define B0 and the sequence F~. These 

definitions take place in M. As in Section 1.3, F~ is slow and for some s and some 

integer j we have 

Vp _-> j x(p) ~ Fs(p). 

Modifying Fs for p < j, we can realize the stronger property 

Vp x ( p ) E E ( p ) .  

STEP 2. Given any x E to', there exists y ~ to" fl M such that 
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is infinite. 

PROOF. 

{p :x(p)  = y(p)} 

We already know that for some slow F in M, F :  to ---> [to ]<o,, we have 

Vp x (p)EF(p) .  

We now follow the proof of Lemma 2.1. and define l-l, A ~ as in this proof. The 

set lim sup A ~tP) is of probability one, hence, by the hypothesis, it contains a 

closed set of positive measure coded in M, hence a member y of M. For this y, 

we have an infinite set of integers p such that 

y(p) = x(p). 

STEP 3. Any nowhere-dense closed set C is covered by some meager Borel set 

coded in M. . 

PROOF. This part is modelled after Section 2.2. We define Oc as in this 

section. By Step 1, Oc is dominated by some element A of M. We then define 

from A a sequence (u~) as in Section 2.2 and also the analog of trc. Applying Step 

2, we find an element y of M, y : to ---> E such that 

(i) Vp y (p )E to~ ,  

(ii) {p : trc (p) = y (p)} is infinite. 

We then consider the real z defined by z rip = y(p) and we fix an enumeration 

(z.) of all elements of to ~ which differ from z at finitely many integers only. We 

define qc as in the proof of Theorem 2 and, using Step 1 again, we find 

r E M (1 to,o, dominating qc. We conclude the proof by letting s, = z, I r(n) and 

considering lim sup g., which is a dense G~ with a code in M, whose complement 

covers the given set C. 

2.5. We now consider Theorem 4. We show that -'1 C(m) implies -'-1 C(c). If 

there is a family of K many Borel sets (Be)e<K of measure zero, such that any 

zero-measure set is covered by some Be, then we may consider an inner model of 

type L[A],  A C_ K, in which we can find codes for every Borel set of the 

sequence (Be). From Proposition 2.3, it follows that any nowhere-dense closed 

set is covered by some meager Borel set in L[A]. If K is Of uncountable 

cofinality, there are at most K many such meager sets. If K is of Cofinality to, we 

note that Proposition 2.3 still holds when M is not an inner model but the union 

of an increasing sequence (M,) of inner models, and we build such a sequence 

(M.) with the following properties: 

(i) I,.J, M. has K many reals, 
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(ii) any Borel set B~ has a code in some M,. 

w On stronger measurability hypotheses 

It was pointed out in the introduction to this paper that it is not clear whether 

or not measurability hypotheses concerning larger classes of sets have striking 

consequences. We now prove that the stronger "measurable uniformization 

property" defined in the introduction implies the perfect set theorem. 

3.1. If H is a subset of to~ • 2 ~ • 2 ~', a section of H is any subset HA,o of 2 ~, 
A E tow, a ~ 2 ~, defined by 

HA,~ = {/3 : (A,a , /3 )E  H}. 

The following is proved (but not actually stated) in the work of the first author on 
the measure problem ([4]). 

PROPOSmON (ZF + DC). There is a fixed G~ subset H of to ~ • 2 ~" • 2 ~" whose 

sections are of zero measure and which is such that, for any uncountable subset X 

o f T ' ,  

(i) either [or some A, HA(X) = U~xH~. , ,  is not of zero-measure; 

(ii) or some filter on to definable [rom X is not measurable. 

3.2. We note that the M.U.P. implies the measurability of all sets: in order to 
prove the measurability of A, one just uniformizes its characteristic function. 
From this it follows that, given an uncountable subset X of 2 ~, there is an 

element A of to ~ such that HA (X) is of strictly positive measure. We write H in 

place of H~ and Ho in place of H~,~. We let B be a Borel set of positive measure 
included in H ( X )  and we uniformize the family (A~)~8  where 

A~ ={a ~ X :/3 E H~ }. 

Thus we find a Borel function f such that 

/x ({/3 E B :/(/3) ~ A,  }) = 0. 

We let Bo be a Borel set of positive measure included in B and such that 

which means 

V/3 E B0 f(/3) ~ A~, 

V/3 E Bo f(/3) ~ X &/3 ~ H~r 

We let U be the image of Bo by f. U is an analytic subset of X, U is not 
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countable, otherwise, we get a contradiction because 

B o g  U Hr~,) = U Ho 
~ E B  o a E U  

and each section of H is of zero measure. So U contains a perfect subset which is 

a subset of X as well. This finishes the proof of Theorem 5. 
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